WELCOME

13.5: Factoring by Grouping

Warm Up

Factor:

1)
$$x^2 + 6x - 27$$

2)
$$5x^2 + 11x + 6$$

3)
$$6x^2 + x - 2$$

Learning Target

I can factor by using the grouping method.

Factoring by Grouping

Factoring by grouping is a method that <u>can be</u> used to factor a standard polynomial consisting of <u>4 terms</u> with no GCF.

$$2x^3 + 6x^2 + 5x + 15 =$$

*Group First two terms and last two terms.
Then factor out the GCF of each grouping.

Practice: Factoring by Grouping

$$x^3 - x^2 + 2x - 2 =$$

$$5x^3 - 2x^2 - 15x + 6 =$$

QUIZ!

Chapter 13: Polynomials and Quadratics

Last Night's HW: Chapter 13.5-Front Side

Tonight's HW:

Warm Up

Factor each expression:

1.
$$6x^2 - 32x - 70$$

2.
$$12x^3 + 2x^2 - 30x - 5$$

Find the ZEROES:

3.
$$x^2 + 2x - 36 = 12$$

Learning Target

I can identify and factor the <u>difference of two</u> <u>squares</u>.

I can also identify and factor <u>perfect square</u> trinomials.

Multiplying Binomials Discovery

Math 213.5 Classwork (Side #1)

Name:_____

$$(x+3)\cdot(x-3)$$

$$(x-9)\cdot(x+9)$$

$$(x+1)\cdot(x-1)$$

$$(2x+3)\cdot(2x-3)$$

$$(x+y)\cdot(x-y)$$

$$(2x+3y)\cdot(2x-3y)$$

My Conjecture:

Class Observations/Revision:

Vocab

Difference: Subtraction

Square (perfect square): Numbers that when we take the square root result in a whole number

Ex: 1, 4, 9, x^2 , y^4

Difference of Two Squares

$$a^2 - b^2 = (a + b)(a - b)$$
Difference of two squares
$$= Sum \bullet Difference$$

Factoring the difference of $a^2 \& b^2$ always results in (a+b)(a-b)

$$a^2 - b^2 = (a + b)(a - b)$$

 $9x^2 - 16$

Step 1: Write the two parentheses (one with a + sign & one with a - sign)

Step 2: Find
$$\sqrt{a^2} = a \, \& \sqrt{b^2} = b$$

Step 3: Fill in parentheses Check w/FOIL

Practice

Completely factor the following differences of two squares.

1.
$$x^2 - 36 =$$

2.
$$100 - 49z^2$$

3.
$$p^4 - 16 =$$

Multiplying Binomials Discovery Side #2

Math 213.5 Classwork (Side #2)

Name:_____

$$(x+6)\cdot(x+6)$$

$$(x-4)\cdot(x-4)$$

$$(x+2)\cdot(x+2)$$

$$(2x-1)\cdot(2x-1)$$

$$(x+y)\cdot(x+y)$$

$$(x-y)\cdot(x-y)$$

The Square of a Binomial

When you square a binomial $(a \pm b)^2$ we find the pattern $a^2 \pm 2ab + b^2$ always occurs

$$(a + b)^2 = a^2 + 2ab + b^2$$
Perfect Square
 $(a - b)^2 = a^2 - 2ab + b^2$
Trinomials

This pattern can be used to help us factor faster

Detecting & Solving Perfect Squares!

Is $4x^2 - 20x + 25$ a Perfect Square Trinomial??

First Term

 a^2

$$\sqrt{4x^2} = 2x$$

Second Term

2ab

$$20x = 2(2x)(5)$$

Third Term

 b^2

$$\sqrt{25} = 5$$

Step 1: Make sure it's a perfect square (middle is = $2 \cdot \sqrt{1^{st}} \cdot \sqrt{3^{rd}}$)

Step 2: Make two parentheses with ++ or

- - based on second term

Step 3: Plug in square root of first and last term.

Factoring a Perfect Square Trinomial

$$x^2 + 12x + 36 =$$

$$9x^2 + 30x + 25 =$$

