WELCOME

13.5: Factoring by Grouping

Warm Up

Factor:

1) $x^{2}+6 x-27$
2) $5 x^{2}+11 x+6$
3) $6 x^{2}+x-2$

Learning Target

I can factor by using the grouping method.

Factoring by Grouping

Factoring by grouping is a method that can be used to factor a standard polynomial consisting of 4 terms with no GCF.

$$
2 x^{3}+6 x^{2}+5 x+15=
$$

*Group First two terms and last two terms.
Then factor out the GCF of each grouping.

Practice: Factoring by Grouping $x^{3}-x^{2}+2 x-2=$

$5 x^{3}-2 x^{2}-15 x+6=$

QUIZ!

 Math 2

 Math 2}

Chapter 13: Polynomials and Quadratics

Last Night's HW: Chapter 13.5-Front Side

Tonight's HW:

Warm Up

Factor each expression:

1. $6 x^{2}-32 x-70$

$$
\text { 2. } 12 x^{3}+2 x^{2}-30 x-5
$$

Find the ZEROES:
3. $x^{2}+2 x-36=12$

Learning Target

I can identify and factor the difference of two squares.

I can also identify and factor perfect square trinomials.

Multiplying Binomials Discovery

Math 213.5 Classwork (Side \#1)
1)

$$
(x+3) \cdot(x-3)
$$

3)

$$
(x+1) \cdot(x-1)
$$

5)

$$
(x+y) \cdot(x-y)
$$

Name: \qquad
2)

$$
(x-9) \cdot(x+9)
$$

4)

$(2 x+3) \cdot(2 x-3)$
6)
$(2 x+3 y) \cdot(2 x-3 y)$

Vocab

Difference: Subtraction

Square (perfect square): Numbers that when we take the square root result in a whole number

Ex: $\quad 1,4,9, x^{2}, y^{4}$

Difference of Two Squares

$a^{2}-b^{2}=(a+b)(a-b)$
Difference of two squares

$$
=\text { Sum • Difference }
$$

Factoring the difference of $a^{2} \& b^{2}$ always results in ($a+b$) (a-b)

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

$$
9 x^{2}-16
$$

Step 1: Write the two parentheses (one with a + sign \& one with a - sign)

Step 2: Find $\sqrt{a^{2}}=a \& \sqrt{b^{2}}=b$
Step 3: Fill in parentheses Check w/FOIL

Practice

Completely factor the following differences of two squares.

1. $x^{2}-36=$
2. $100-49 z^{2}$
3. $p^{4}-16=$

Multiplying Binomials Discovery Side \#2

Math 213.5 Classwork (Side \#2)
1)

$$
(x+6) \cdot(x+6)
$$

3)

$$
(x+2) \cdot(x+2)
$$

5)

$$
(x+y) \cdot(x+y)
$$

Name: \qquad
2)

$$
(x-4) \cdot(x-4)
$$

4)

$$
(2 x-1) \cdot(2 x-1)
$$

6)

$$
(x-y) \cdot(x-y)
$$

The Square of a Binomial

When you square a binomial $(a \pm b)^{2}$ we find the pattern $a^{2} \pm 2 a b+b^{2}$ always occurs

$$
\left.\begin{array}{l}
(a+b)^{2}=a^{2}+2 a b+b^{2} \\
(a-b)^{2}=a^{2}-2 a b+b^{2}
\end{array}\right\} \begin{gathered}
\text { Perfect Square } \\
\text { Trinomials }
\end{gathered}
$$

This pattern can be used to help us factor faster

Detecting \& Solving Perfect Squares!

Is $4 x^{2}-20 x+25$ a Perfect Square Trinomial??

$\frac{\text { First Term }}{a^{2}}$
$\sqrt{4 x^{2}}=2 x$

Second Term
$2 a b$
$20 x=2(2 x)(5)$

Third Term b^{2}
$\sqrt{25}=5$

$$
4 x^{2}-12 x+9
$$

Step 1: Make sure it's a perfect square (middle is $=2 \cdot \sqrt{1^{s t}} \cdot \sqrt{3^{r d}}$)

Step 2: Make two parentheses with ++ or - - based on second term

Step 3: Plug in square root of first and last term.

Factoring a Perfect Square Trinomial

$x^{2}+12 x+36=$

$9 x^{2}+30 x+25=$

